QuantileTransform¶
- class QuantileTransform(in_column: str, quantile: float, window: int, seasonality: int = 1, min_periods: int = 1, fillna: float = 0, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.math.statistics.WindowStatisticsTransform
QuantileTransform computes quantile value for given window.
Init QuantileTransform.
- Parameters
in_column (str) – name of processed column
quantile (float) – quantile to calculate
window (int) – size of window to aggregate
seasonality (int) – seasonality of lags to compute window’s aggregation with
min_periods (int) – min number of targets in window to compute aggregation; if there is less than
min_periods
number of targets return Nonefillna (float) – value to fill results NaNs with
out_column (str, optional) – result column name. If not given use
self.__repr__()
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
get_regressors_info
()Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
window
,quantile
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]