TimeSeriesImputerTransform

class TimeSeriesImputerTransform(in_column: str = 'target', strategy: str = ImputerMode.constant, window: int = - 1, seasonality: int = 1, default_value: Optional[float] = None, constant_value: float = 0)[source]

Bases: etna.transforms.base.ReversibleTransform

Transform to fill NaNs in series of a given dataframe.

  • It is assumed that given series begins with first non NaN value.

  • This transform can’t fill NaNs in the future, only on train data.

  • This transform can’t fill NaNs if all values are NaNs. In this case exception is raised.

Warning

This transform can suffer from look-ahead bias in ‘mean’ mode. For transforming data at some timestamp it uses information from the whole train part.

Create instance of TimeSeriesImputerTransform.

Parameters
  • in_column (str) – name of processed column

  • strategy (str) –

    filling value in missing timestamps:

    • If “mean”, then replace missing dates using the mean in fit stage.

    • If “running_mean” then replace missing dates using mean of subset of data

    • If “forward_fill” then replace missing dates using last existing value

    • If “seasonal” then replace missing dates using seasonal moving average

    • If “constant” then replace missing dates using constant value.

  • window (int) –

    In case of moving average and seasonality.

    • If window=-1 all previous dates are taken in account

    • Otherwise only window previous dates

  • seasonality (int) – the length of the seasonality

  • default_value (Optional[float]) – value which will be used to impute the NaNs left after applying the imputer with the chosen strategy

  • constant_value (float) – value to fill gaps in “constant” strategy

Raises

ValueError: – if incorrect strategy given

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes parameters: strategy, window. Other parameters are expected to be set by the user.

Strategy “seasonal” is suggested only if self.seasonality is set higher than 1.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]