MeanTransform¶
- class MeanTransform(in_column: str, window: int, seasonality: int = 1, alpha: float = 1, min_periods: int = 1, fillna: float = 0, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.math.statistics.WindowStatisticsTransform
MeanTransform computes average value for given window.
\[MeanTransform(x_t) = \sum_{i=1}^{window}{x_{t - i}\cdot\alpha^{i - 1}}\]Init MeanTransform.
- Parameters
in_column (str) – name of processed column
window (int) – size of window to aggregate
seasonality (int) – seasonality of lags to compute window’s aggregation with
alpha (float) – autoregressive coefficient
min_periods (int) – min number of targets in window to compute aggregation; if there is less than
min_periods
number of targets return Nonefillna (float) – value to fill results NaNs with
out_column (str, optional) – result column name. If not given use
self.__repr__()
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
get_regressors_info
()Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
window
,alpha
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]