TimeFlagsTransform

class TimeFlagsTransform(minute_in_hour_number: bool = True, fifteen_minutes_in_hour_number: bool = False, hour_number: bool = True, half_hour_number: bool = False, half_day_number: bool = False, one_third_day_number: bool = False, out_column: Optional[str] = None)[source]

Bases: etna.transforms.base.IrreversibleTransform, etna.transforms.base.FutureMixin

TimeFlagsTransform is a class that implements extraction of the main time-based features from datetime column.

Initialise class attributes.

Parameters
  • minute_in_hour_number (bool) – if True: add column with minute number to feature dataframe in transform

  • fifteen_minutes_in_hour_number (bool) – if True: add column with number of fifteen-minute interval within hour with numeration from 0 to feature dataframe in transform

  • hour_number (bool) – if True: add column with hour number to feature dataframe in transform

  • half_hour_number (bool) – if True: add column with 0 for the first half of the hour and 1 for the second to feature dataframe in transform

  • half_day_number (bool) – if True: add column with 0 for the first half of the day and 1 for the second to feature dataframe in transform

  • one_third_day_number (bool) – if True: add column with number of 8-hour interval within day with numeration from 0 to feature dataframe in transform

  • out_column (Optional[str]) –

    base for the name of created columns;

    • if set the final name is ‘{out_column}_{feature_name}’;

    • if don’t set, name will be transform.__repr__(), repr will be made for transform that creates exactly this column

Raises

ValueError – if feature has invalid initial params:

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes parameters: minute_in_hour_number, fifteen_minutes_in_hour_number, hour_number, half_hour_number, half_day_number, one_third_day_number. Other parameters are expected to be set by the user.

There are no restrictions on all False values for the flags.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]