MRMRFeatureSelectionTransform¶
- class MRMRFeatureSelectionTransform(relevance_table: etna.analysis.feature_relevance.relevance.RelevanceTable, top_k: int, features_to_use: Union[List[str], Literal['all']] = 'all', fast_redundancy: bool = False, relevance_aggregation_mode: str = AggregationMode.mean, redundancy_aggregation_mode: str = AggregationMode.mean, atol: float = 1e-10, return_features: bool = False, **relevance_params)[source]¶
Bases:
etna.transforms.feature_selection.base.BaseFeatureSelectionTransform
Transform that selects features according to MRMR variable selection method adapted to the timeseries case.
Notes
Transform works with any type of features, however most of the models works only with regressors. Therefore, it is recommended to pass the regressors into the feature selection transforms.
Init MRMRFeatureSelectionTransform.
- Parameters
relevance_table (etna.analysis.feature_relevance.relevance.RelevanceTable) – method to calculate relevance table
top_k (int) – num of features to select; if there are not enough features, then all will be selected
features_to_use (Union[List[str], Literal['all']]) – columns of the dataset to select from if “all” value is given, all columns are used
fast_redundancy (bool) –
True: compute redundancy only inside the the segments, time complexity :math:`O(top_k * n_segments * n_features * history_len)
False: compute redundancy for all the pairs of segments, time complexity \(O(top\_k * n\_segments^2 * n\_features * history\_len)\)
relevance_aggregation_mode (str) – the method for relevance values per-segment aggregation
redundancy_aggregation_mode (str) – the method for redundancy values per-segment aggregation
atol (float) – the absolute tolerance to compare the float values
return_features (bool) – indicates whether to return features or not.
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
get_regressors_info
()Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes
top_k
parameter. Other parameters are expected to be set by the user.For
top_k
parameter the maximum suggested value is not greater thanself.top_k
.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]