LabelEncoderTransform

class LabelEncoderTransform(in_column: str, out_column: Optional[str] = None, strategy: str = ImputerMode.mean)[source]

Bases: etna.transforms.base.IrreversibleTransform

Encode categorical feature with value between 0 and n_classes-1.

Init LabelEncoderTransform.

Parameters
  • in_column (str) – Name of column to be transformed

  • out_column (Optional[str]) – Name of added column. If not given, use self.__repr__()

  • strategy (str) –

    Filling encoding in not fitted values:

    • If “new_value”, then replace missing values with ‘-1’

    • If “mean”, then replace missing values using the mean in encoded column

    • If “none”, then replace missing values with None

Inherited-members

Methods

fit(ts)

Fit the transform.

fit_transform(ts)

Fit and transform TSDataset.

get_regressors_info()

Return the list with regressors created by the transform.

inverse_transform(ts)

Inverse transform TSDataset.

load(path)

Load an object.

params_to_tune()

Get default grid for tuning hyperparameters.

save(path)

Save the object.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

transform(ts)

Transform TSDataset inplace.

fit(ts: etna.datasets.tsdataset.TSDataset) etna.transforms.encoders.categorical.LabelEncoderTransform[source]

Fit the transform.

Parameters

ts (etna.datasets.tsdataset.TSDataset) –

Return type

etna.transforms.encoders.categorical.LabelEncoderTransform

get_regressors_info() List[str][source]

Return the list with regressors created by the transform.

Return type

List[str]

params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution][source]

Get default grid for tuning hyperparameters.

This grid tunes strategy parameter. Other parameters are expected to be set by the user.

Returns

Grid to tune.

Return type

Dict[str, etna.distributions.distributions.BaseDistribution]