LinearTrendTransform¶
- class LinearTrendTransform(in_column: str, poly_degree: int = 1, **regression_params)[source]¶
Bases:
etna.transforms.base.ReversiblePerSegmentWrapper
Transform that uses linear regression with polynomial features to make a detrending.
Transform fits a
sklearn.linear_model.LinearRegression
with polynomial features on each segment. Values predicted by the model are subtracted from each segment.Warning
This transform can suffer from look-ahead bias. For transforming data at some timestamp it uses information from the whole train part.
Create instance of LinearTrendTransform.
- Parameters
in_column (str) – name of processed column
poly_degree (int) – degree of polynomial to fit trend on
regression_params – params that should be used to init
sklearn.linear_model.LinearRegression
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes only
poly_degree
parameter. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]