TimeFlagsTransform¶
- class TimeFlagsTransform(minute_in_hour_number: bool = True, fifteen_minutes_in_hour_number: bool = False, hour_number: bool = True, half_hour_number: bool = False, half_day_number: bool = False, one_third_day_number: bool = False, out_column: Optional[str] = None)[source]¶
Bases:
etna.transforms.base.IrreversibleTransform
,etna.transforms.base.FutureMixin
TimeFlagsTransform is a class that implements extraction of the main time-based features from datetime column.
Initialise class attributes.
- Parameters
minute_in_hour_number (bool) – if True: add column with minute number to feature dataframe in transform
fifteen_minutes_in_hour_number (bool) – if True: add column with number of fifteen-minute interval within hour with numeration from 0 to feature dataframe in transform
hour_number (bool) – if True: add column with hour number to feature dataframe in transform
half_hour_number (bool) – if True: add column with 0 for the first half of the hour and 1 for the second to feature dataframe in transform
half_day_number (bool) – if True: add column with 0 for the first half of the day and 1 for the second to feature dataframe in transform
one_third_day_number (bool) – if True: add column with number of 8-hour interval within day with numeration from 0 to feature dataframe in transform
out_column (Optional[str]) –
base for the name of created columns;
if set the final name is ‘{out_column}_{feature_name}’;
if don’t set, name will be
transform.__repr__()
, repr will be made for transform that creates exactly this column
- Raises
ValueError – if feature has invalid initial params:
- Inherited-members
Methods
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- get_regressors_info() List[str] [source]¶
Return the list with regressors created by the transform.
- Return type
List[str]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
minute_in_hour_number
,fifteen_minutes_in_hour_number
,hour_number
,half_hour_number
,half_day_number
,one_third_day_number
. Other parameters are expected to be set by the user.There are no restrictions on all
False
values for the flags.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]