OutliersTransform¶
- class OutliersTransform(in_column: str)[source]¶
Bases:
etna.transforms.base.ReversibleTransform
,abc.ABC
Finds outliers in specific columns of DataFrame and replaces it with NaNs.
Create instance of OutliersTransform.
- Parameters
in_column (str) – name of processed column
- Inherited-members
Methods
detect_outliers
(ts)Call function for detection outliers with self parameters.
fit
(ts)Fit the transform.
fit_transform
(ts)Fit and transform TSDataset.
Return the list with regressors created by the transform.
inverse_transform
(ts)Inverse transform TSDataset.
load
(path)Load an object.
params_to_tune
()Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
transform
(ts)Transform TSDataset inplace.
- abstract detect_outliers(ts: etna.datasets.tsdataset.TSDataset) Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]] [source]¶
Call function for detection outliers with self parameters.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – dataset to process
- Returns
dict of outliers in format {segment: [outliers_timestamps]}
- Return type
Dict[str, List[pandas._libs.tslibs.timestamps.Timestamp]]