SklearnPreprocessingPerIntervalModel

class SklearnPreprocessingPerIntervalModel(preprocessing: sklearn.base.TransformerMixin)[source]

Bases: etna.transforms.decomposition.change_points_based.per_interval_models.base.PerIntervalModel

SklearnPreprocessingPerIntervalModel applies PerIntervalModel interface for sklearn preprocessings.

Inherited-members

Parameters

preprocessing (sklearn.base.TransformerMixin) –

Methods

fit(features, target, *args, **kwargs)

Fit preprocessing with given features and targets.

inverse(features)

Apply inverse transformation.

predict(features, *args, **kwargs)

Apply preprocessing to given features.

set_params(**params)

Return new object instance with modified parameters.

to_dict()

Collect all information about etna object in dict.

fit(features: numpy.ndarray, target: numpy.ndarray, *args, **kwargs) etna.transforms.decomposition.change_points_based.per_interval_models.sklearn_based.SklearnPreprocessingPerIntervalModel[source]

Fit preprocessing with given features and targets.

Parameters
  • features (numpy.ndarray) – features to fit preprocessing with

  • target (numpy.ndarray) – targets to apply preprocessing to

Returns

fitted SklearnPreprocessingPerIntervalModel

Return type

self

inverse(features: numpy.ndarray) numpy.ndarray[source]

Apply inverse transformation.

Parameters

features (numpy.ndarray) – features to apply inverse transformation

Returns

features after inverse transformation

Return type

inversed data

predict(features: numpy.ndarray, *args, **kwargs) numpy.ndarray[source]

Apply preprocessing to given features.

Parameters

features (numpy.ndarray) – features to make preprocessing for

Returns

preprocessing’s prediction for given features

Return type

prediction