_StatsForecastBaseAdapter

class _StatsForecastBaseAdapter(model: Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA], support_prediction_intervals: bool)[source]

Bases: etna.models.base.BaseAdapter

Base class for adapters for models from statsforecast package.

Init model with given parameters.

Parameters
  • model (Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA]) – Model from statsforecast.

  • support_prediction_intervals (bool) – Should model support prediction intervals.

Inherited-members

Methods

fit(df, regressors)

Fit statsforecast adapter.

forecast(df[, prediction_interval, quantiles])

Compute predictions on future data from a statsforecast model.

forecast_components(df)

Estimate forecast components.

get_model()

Get statsforecast model that is used inside etna class.

predict(df[, prediction_interval, quantiles])

Compute in-sample predictions from a statsforecast model.

predict_components(df)

Estimate prediction components.

fit(df: pandas.core.frame.DataFrame, regressors: List[str]) etna.models.statsforecast._StatsForecastBaseAdapter[source]

Fit statsforecast adapter.

Parameters
  • df (pandas.core.frame.DataFrame) – Features dataframe

  • regressors (List[str]) – List of the columns with regressors

Returns

Fitted adapter

Return type

etna.models.statsforecast._StatsForecastBaseAdapter

forecast(df: pandas.core.frame.DataFrame, prediction_interval: bool = False, quantiles: Sequence[float] = ()) pandas.core.frame.DataFrame[source]

Compute predictions on future data from a statsforecast model.

This method only works on data that goes right after the train.

Parameters
  • df (pandas.core.frame.DataFrame) – Features dataframe

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution

Returns

DataFrame with predictions

Return type

pandas.core.frame.DataFrame

forecast_components(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Estimate forecast components.

Parameters

df (pandas.core.frame.DataFrame) – features dataframe

Returns

dataframe with forecast components

Return type

pandas.core.frame.DataFrame

get_model() Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA][source]

Get statsforecast model that is used inside etna class.

Returns

Internal model

Return type

Union[statsforecast.models.AutoCES, statsforecast.models.AutoARIMA, statsforecast.models.AutoTheta, statsforecast.models.AutoETS, etna.libs.statsforecast.arima.ARIMA]

predict(df: pandas.core.frame.DataFrame, prediction_interval: bool = False, quantiles: Sequence[float] = ()) pandas.core.frame.DataFrame[source]

Compute in-sample predictions from a statsforecast model.

This method only works on train data.

Parameters
  • df (pandas.core.frame.DataFrame) – Features dataframe

  • prediction_interval (bool) – If True returns prediction interval for forecast

  • quantiles (Sequence[float]) – Levels of prediction distribution

Returns

DataFrame with predictions

Return type

pandas.core.frame.DataFrame

predict_components(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame[source]

Estimate prediction components.

Parameters

df (pandas.core.frame.DataFrame) – features dataframe

Returns

dataframe with prediction components

Return type

pandas.core.frame.DataFrame