NBeatsBaseNet¶
- class NBeatsBaseNet(model: torch.nn.modules.module.Module, input_size: int, output_size: int, loss: torch.nn.modules.module.Module, lr: float, optimizer_params: Optional[Dict[str, Any]])[source]¶
Bases:
etna.models.base.DeepBaseNet
Base class for N-BEATS models.
Init DeepBaseNet.
Methods
Optimizer configuration.
forward
(batch)Forward pass.
make_samples
(df, encoder_length, decoder_length)Make samples from segment DataFrame.
step
(batch, *args, **kwargs)Step for loss computation for training or validation.
Attributes
- Parameters
model (nn.Module) –
input_size (int) –
output_size (int) –
loss (nn.Module) –
lr (float) –
optimizer_params (Optional[Dict[str, Any]]) –
- configure_optimizers() Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]] [source]¶
Optimizer configuration.
- Return type
Tuple[List[torch.optim.optimizer.Optimizer], List[Dict[str, Any]]]
- forward(batch: etna.models.nn.nbeats.nets.NBeatsBatch) torch.Tensor [source]¶
Forward pass.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
Prediction data.
- Return type
- make_samples(df: pandas.core.frame.DataFrame, encoder_length: int, decoder_length: int) Iterable[dict] [source]¶
Make samples from segment DataFrame.
- Parameters
df (pandas.core.frame.DataFrame) –
encoder_length (int) –
decoder_length (int) –
- Return type
Iterable[dict]
- step(batch: etna.models.nn.nbeats.nets.NBeatsBatch, *args, **kwargs)[source]¶
Step for loss computation for training or validation.
- Parameters
batch (etna.models.nn.nbeats.nets.NBeatsBatch) – Batch of input data.
- Returns
loss, true_target, prediction_target