MLPNet¶
- class MLPNet(input_size: int, hidden_size: List[int], lr: float, loss: torch.nn.modules.module.Module, optimizer_params: Optional[dict])[source]¶
Bases:
etna.models.base.DeepBaseNet
MLP model.
Init MLP model.
- Parameters
input_size (int) – size of the input feature space: target plus extra features
hidden_size (List[int]) – list of sizes of the hidden states
lr (float) – learning rate
loss (torch.nn.Module) – loss function
optimizer_params (Optional[dict]) – parameters for optimizer for Adam optimizer (api reference
torch.optim.Adam
)
- Return type
None
Methods
Optimizer configuration.
forward
(batch)Forward pass.
make_samples
(df, encoder_length, decoder_length)Make samples from segment DataFrame.
step
(batch, *args, **kwargs)Step for loss computation for training or validation.
Attributes
- forward(batch: etna.models.nn.mlp.MLPBatch)[source]¶
Forward pass.
- Parameters
batch (etna.models.nn.mlp.MLPBatch) – batch of data
- Returns
forecast
- make_samples(df: pandas.core.frame.DataFrame, encoder_length: int, decoder_length: int) Iterable[dict] [source]¶
Make samples from segment DataFrame.
- Parameters
df (pandas.core.frame.DataFrame) –
encoder_length (int) –
decoder_length (int) –
- Return type
Iterable[dict]
- step(batch: etna.models.nn.mlp.MLPBatch, *args, **kwargs)[source]¶
Step for loss computation for training or validation.
- Parameters
batch (etna.models.nn.mlp.MLPBatch) – batch of data
- Returns
loss, true_target, prediction_target