DeepARModel¶
- class DeepARModel(decoder_length: Optional[int] = None, encoder_length: Optional[int] = None, dataset_builder: Optional[etna.models.nn.utils.PytorchForecastingDatasetBuilder] = None, train_batch_size: int = 64, test_batch_size: int = 64, lr: float = 0.001, cell_type: str = 'LSTM', hidden_size: int = 10, rnn_layers: int = 2, dropout: float = 0.1, loss: Optional[pytorch_forecasting.metrics.DistributionLoss] = None, trainer_params: Optional[Dict[str, Any]] = None, quantiles_kwargs: Optional[Dict[str, Any]] = None)[source]¶
Bases:
etna.models.nn.utils._DeepCopyMixin
,etna.models.nn.utils.PytorchForecastingMixin
,etna.models.mixins.SaveNNMixin
,etna.models.base.PredictionIntervalContextRequiredAbstractModel
Wrapper for
pytorch_forecasting.models.deepar.DeepAR
.Notes
We save
pytorch_forecasting.data.timeseries.TimeSeriesDataSet
in instance to use it in the model. It`s not right pattern of using Transforms and TSDataset.Initialize DeepAR wrapper.
- Parameters
decoder_length (Optional[int]) – Decoder length.
encoder_length (int) – Encoder length.
dataset_builder (etna.models.nn.utils.PytorchForecastingDatasetBuilder) – Dataset builder for PytorchForecasting.
train_batch_size (int) – Train batch size.
test_batch_size (int) – Test batch size.
lr (float) – Learning rate.
cell_type (str) – One of ‘LSTM’, ‘GRU’.
hidden_size (int) – Hidden size of network which can range from 8 to 512.
rnn_layers (int) – Number of LSTM layers.
dropout (float) – Dropout rate.
loss (Optional[DistributionLoss]) – Distribution loss function. Keep in mind that each distribution loss function might have specific requirements for target normalization. Defaults to
pytorch_forecasting.metrics.NormalDistributionLoss
.trainer_params (Dict[str, Any]) – Additional arguments for pytorch_lightning Trainer.
quantiles_kwargs (Optional[Dict[str, Any]]) – Additional arguments for computing quantiles, look at
to_quantiles()
method for your loss.
- Inherited-members
Methods
fit
(ts)Fit model.
forecast
(ts, prediction_size[, ...])Make predictions.
Get internal model that is used inside etna class.
load
(path)Load an object.
Get default grid for tuning hyperparameters.
predict
(ts, prediction_size[, ...])Make predictions.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Context size of the model.
- forecast(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions.
This method will make autoregressive predictions.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context for models that require it.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns forecast components
- Returns
TSDataset with predictions.
- Return type
- get_model() Any [source]¶
Get internal model that is used inside etna class.
Model is the instance of
pytorch_forecasting.models.deepar.DeepAR
.- Returns
Internal model
- Return type
Any
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get default grid for tuning hyperparameters.
This grid tunes parameters:
hidden_size
,rnn_layers
,dropout
,lr
. Other parameters are expected to be set by the user.- Returns
Grid to tune.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- predict(ts: etna.datasets.tsdataset.TSDataset, prediction_size: int, prediction_interval: bool = False, quantiles: Sequence[float] = (0.025, 0.975), return_components: bool = False) etna.datasets.tsdataset.TSDataset [source]¶
Make predictions.
This method will make predictions using true values instead of predicted on a previous step. It can be useful for making in-sample forecasts.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
prediction_size (int) – Number of last timestamps to leave after making prediction. Previous timestamps will be used as a context.
prediction_interval (bool) – If True returns prediction interval for forecast
quantiles (Sequence[float]) – Levels of prediction distribution. By default 2.5% and 97.5% are taken to form a 95% prediction interval
return_components (bool) – If True additionally returns prediction components
- Returns
TSDataset with predictions.
- Return type
- property context_size: int¶
Context size of the model.