_HoltWintersAdapter¶
- class _HoltWintersAdapter(trend: Optional[str] = None, damped_trend: bool = False, seasonal: Optional[str] = None, seasonal_periods: Optional[int] = None, initialization_method: str = 'estimated', initial_level: Optional[float] = None, initial_trend: Optional[float] = None, initial_seasonal: Optional[Sequence[float]] = None, use_boxcox: Union[bool, str, float] = False, bounds: Optional[Dict[str, Tuple[float, float]]] = None, dates: Optional[Sequence[datetime.datetime]] = None, freq: Optional[str] = None, missing: str = 'none', smoothing_level: Optional[float] = None, smoothing_trend: Optional[float] = None, smoothing_seasonal: Optional[float] = None, damping_trend: Optional[float] = None, **fit_kwargs)[source]¶
Bases:
etna.models.base.BaseAdapter
Class for holding Holt-Winters’ exponential smoothing model.
Notes
We use
statsmodels.tsa.holtwinters.ExponentialSmoothing
model from statsmodels package.Init Holt-Winters’ model with given params.
- Parameters
trend (Optional[str]) –
Type of trend component. One of:
’add’
’mul’
’additive’
’multiplicative’
None
damped_trend (bool) – Should the trend component be damped.
seasonal (Optional[str]) –
Type of seasonal component. One of:
’add’
’mul’
’additive’
’multiplicative’
None
seasonal_periods (Optional[int]) – The number of periods in a complete seasonal cycle, e.g., 4 for quarterly data or 7 for daily data with a weekly cycle.
initialization_method (str) –
Method for initialize the recursions. One of:
None
’estimated’
’heuristic’
’legacy-heuristic’
’known’
None defaults to the pre-0.12 behavior where initial values are passed as part of
fit
. If any of the other values are passed, then the initial values must also be set when constructing the model. If ‘known’ initialization is used, theninitial_level
must be passed, as well asinitial_trend
andinitial_seasonal
if applicable. Default is ‘estimated’. “legacy-heuristic” uses the same values that were used in statsmodels 0.11 and earlier.initial_level (Optional[float]) – The initial level component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.
initial_trend (Optional[float]) – The initial trend component. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.
initial_seasonal (Optional[Sequence[float]]) – The initial seasonal component. An array of length seasonal or length
seasonal - 1
(in which case the last initial value is computed to make the average effect zero). Only used if initialization is ‘known’. Required if estimation method is “known”. If set using either “estimated” or “heuristic” this value is used. This allows one or more of the initial values to be set while deferring to the heuristic for others or estimating the unset parameters.use_boxcox ({True, False, 'log', float}, optional) –
Should the Box-Cox transform be applied to the data first? One of:
True
False
’log’: apply log
float: lambda value
bounds (Optional[Dict[str, Tuple[float, float]]]) – An dictionary containing bounds for the parameters in the model, excluding the initial values if estimated. The keys of the dictionary are the variable names, e.g., smoothing_level or initial_slope. The initial seasonal variables are labeled initial_seasonal.<j> for j=0,…,m-1 where m is the number of period in a full season. Use None to indicate a non-binding constraint, e.g., (0, None) constrains a parameter to be non-negative.
dates (Optional[Sequence[datetime.datetime]]) – An array-like object of datetime objects. If a Pandas object is given for endog, it is assumed to have a DateIndex.
freq (Optional[str]) – The frequency of the time-series. A Pandas offset or ‘B’, ‘D’, ‘W’, ‘M’, ‘A’, or ‘Q’. This is optional if dates are given.
missing (str) – Available options are ‘none’, ‘drop’, and ‘raise’. If ‘none’, no nan checking is done. If ‘drop’, any observations with nans are dropped. If ‘raise’, an error is raised. Default is ‘none’.
smoothing_level (Optional[float]) – The alpha value of the simple exponential smoothing, if the value is set then this value will be used as the value.
smoothing_trend (Optional[float]) – The beta value of the Holt’s trend method, if the value is set then this value will be used as the value.
smoothing_seasonal (Optional[float]) – The gamma value of the holt winters seasonal method, if the value is set then this value will be used as the value.
damping_trend (Optional[float]) – The phi value of the damped method, if the value is set then this value will be used as the value.
fit_kwargs – Additional parameters for calling
statsmodels.tsa.holtwinters.ExponentialSmoothing.fit()
.
- Inherited-members
Methods
fit
(df, regressors)Fit Holt-Winters' model.
Estimate forecast components.
Get
statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper
model that was fitted inside etna class.predict
(df)Compute predictions from a Holt-Winters' model.
Estimate prediction components.
- fit(df: pandas.core.frame.DataFrame, regressors: List[str]) etna.models.holt_winters._HoltWintersAdapter [source]¶
Fit Holt-Winters’ model.
- Parameters
df (pandas.core.frame.DataFrame) – Features dataframe
regressors (List[str]) – List of the columns with regressors(ignored in this model)
- Returns
Fitted model
- Return type
- forecast_components(df: pandas.core.frame.DataFrame) pandas.core.frame.DataFrame [source]¶
Estimate forecast components.
- Parameters
df (pandas.core.frame.DataFrame) – features dataframe
- Returns
dataframe with forecast components
- Return type
pandas.core.frame.DataFrame
- get_model() statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper [source]¶
Get
statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper
model that was fitted inside etna class.- Returns
Internal model
- Return type
statsmodels.tsa.holtwinters.results.HoltWintersResultsWrapper