AbstractModel¶
- class AbstractModel[source]¶
Bases:
etna.core.mixins.SaveMixin
,abc.ABC
,etna.core.mixins.BaseMixin
Interface for model with fit method.
- Inherited-members
Methods
fit
(ts)Fit model.
Get internal model/models that are used inside etna class.
load
(path)Load an object.
Get grid for tuning hyperparameters.
save
(path)Save the object.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.
Attributes
Context size of the model.
- abstract fit(ts: etna.datasets.tsdataset.TSDataset) etna.models.base.AbstractModel [source]¶
Fit model.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – Dataset with features
- Returns
Model after fit
- Return type
- abstract get_model() Union[Any, Dict[str, Any]] [source]¶
Get internal model/models that are used inside etna class.
Internal model is a model that is used inside etna to forecast segments, e.g.
catboost.CatBoostRegressor
orsklearn.linear_model.Ridge
.- Returns
The result can be of two types:
if model is multi-segment, then the result is internal model
if model is per-segment, then the result is dictionary where key is segment and value is internal model
- Return type
Union[Any, Dict[str, Any]]
- params_to_tune() Dict[str, etna.distributions.distributions.BaseDistribution] [source]¶
Get grid for tuning hyperparameters.
This is default implementation with empty grid.
- Returns
Empty grid.
- Return type
Dict[str, etna.distributions.distributions.BaseDistribution]
- abstract property context_size: int¶
Context size of the model. Determines how many history points do we ask to pass to the model.