EuclideanClustering¶
- class EuclideanClustering[source]¶
Bases:
etna.clustering.hierarchical.base.HierarchicalClustering
Hierarchical clustering with euclidean distance.
Examples
>>> from etna.clustering import EuclideanClustering >>> from etna.datasets import TSDataset >>> from etna.datasets import generate_ar_df >>> ts = generate_ar_df(periods = 40, start_time = "2000-01-01", n_segments = 10) >>> ts = TSDataset(TSDataset.to_dataset(ts), freq="D") >>> model = EuclideanClustering() >>> model.build_distance_matrix(ts) >>> model.build_clustering_algo(n_clusters=3, linkage="average") >>> segment2cluster = model.fit_predict() >>> segment2cluster {'segment_0': 2, 'segment_1': 1, 'segment_2': 0, 'segment_3': 1, 'segment_4': 1, 'segment_5': 0, 'segment_6': 0, 'segment_7': 0, 'segment_8': 2, 'segment_9': 2}
Create instance of EuclideanClustering.
- Inherited-members
Methods
build_clustering_algo
([n_clusters, linkage])Build clustering algo (see
sklearn.cluster.AgglomerativeClustering
) with given params.Build distance matrix with euclidean distance.
fit_predict
()Fit clustering algorithm and predict clusters according to distance matrix build.
get_centroids
(**averaging_kwargs)Get centroids of clusters.
set_params
(**params)Return new object instance with modified parameters.
to_dict
()Collect all information about etna object in dict.