AutoAbstract¶
- class AutoAbstract[source]¶
Bases:
abc.ABC
Interface for
Auto
object.- Inherited-members
Methods
fit
(ts[, timeout, n_trials, initializer, ...])Start automatic pipeline selection.
summary
()Get trials summary.
top_k
([k])Get top k pipelines with the best metric value.
- abstract fit(ts: etna.datasets.tsdataset.TSDataset, timeout: Optional[int] = None, n_trials: Optional[int] = None, initializer: Optional[etna.auto.auto._Initializer] = None, callback: Optional[etna.auto.auto._Callback] = None, **kwargs) etna.pipeline.base.BasePipeline [source]¶
Start automatic pipeline selection.
- Parameters
ts (etna.datasets.tsdataset.TSDataset) – TSDataset to fit on.
timeout (Optional[int]) – Timeout for optuna. N.B. this is timeout for each worker. By default, isn’t set.
n_trials (Optional[int]) – Number of trials for optuna. N.B. this is number of trials for each worker. By default, isn’t set.
initializer (Optional[etna.auto.auto._Initializer]) – Object that is called before each pipeline backtest, can be used to initialize loggers.
callback (Optional[etna.auto.auto._Callback]) – Object that is called after each pipeline backtest, can be used to log extra metrics.
**kwargs – Additional parameters for the method.
- Return type
- abstract summary() pandas.core.frame.DataFrame [source]¶
Get trials summary.
- Returns
dataframe with detailed info on each performed trial
- Return type
study_dataframe
- abstract top_k(k: int = 5) List[etna.pipeline.base.BasePipeline] [source]¶
Get top k pipelines with the best metric value.
Only complete and non-duplicate studies are taken into account.
- Parameters
k (int) – Number of pipelines to return.
- Returns
List of top k pipelines.
- Return type