seasonal_plot¶
- seasonal_plot(ts: TSDataset, freq: Optional[str] = None, cycle: Union[Literal['hour'], Literal['day'], Literal['week'], Literal['month'], Literal['quarter'], Literal['year'], int] = 'year', alignment: Union[Literal['first'], Literal['last']] = 'last', aggregation: Union[Literal['sum'], Literal['mean']] = 'sum', in_column: str = 'target', plot_params: Optional[Dict[str, Any]] = None, cmap: str = 'plasma', segments: Optional[List[str]] = None, columns_num: int = 2, figsize: Tuple[int, int] = (10, 5))[source]¶
Plot each season on one canvas for each segment.
- Parameters
ts (TSDataset) – dataset with timeseries data
freq (Optional[str]) –
frequency to analyze seasons:
if isn’t set, the frequency of
ts
will be used;if set, resampling will be made using
aggregation
parameter. If given frequency is too low, then the frequency ofts
will be used.
cycle (Union[Literal['hour'], typing.Literal['day'], typing.Literal['week'], typing.Literal['month'], typing.Literal['quarter'], typing.Literal['year'], int]) – period of seasonality to capture (see
SeasonalPlotCycle
)alignment (Union[Literal['first'], typing.Literal['last']]) – how to align dataframe in case of integer cycle (see
SeasonalPlotAlignment
)aggregation (Union[Literal['sum'], typing.Literal['mean']]) – how to aggregate values during resampling (see
SeasonalPlotAggregation
)in_column (str) – column to use
cmap (str) – name of colormap for plotting different cycles (see Choosing Colormaps in Matplotlib)
plot_params (Optional[Dict[str, Any]]) – dictionary with parameters for plotting,
matplotlib.axes.Axes.plot()
is usedsegments (Optional[List[str]]) – segments to use
columns_num (int) – number of columns in subplots
figsize (Tuple[int, int]) – size of the figure per subplot with one segment in inches